Note on asymptotic behavior of solutions of a second-order nonlinear differential equation
نویسندگان
چکیده
منابع مشابه
A RESEARCH NOTE ON THE SECOND ORDER DIFFERENTIAL EQUATION
Let U(t, ) be solution of the Dirichlet problem y''+( t-q(t))y= 0 - 1 t l y(-l)= 0 = y(x), with variabIe t on (-1, x), for fixed x, which satisfies the initial condition U(-1, )=0 , (-1, )=1. In this paper, the asymptotic representation of the corresponding eigenfunctions of the eigen values has been investigated . Furthermore, the leading term of the asymptotic formula for ...
متن کاملAsymptotic Behavior of Positive Solutions of a Class of Systems of Second Order Nonlinear Differential Equations
The two-dimensional system of nonlinear differential equations (A) x′′ = p(t)y, y′′ = q(t)x , with positive exponents α and β satisfying αβ < 1 is analyzed in the framework of regular variation. Under the assumption that p(t) and q(t) are nearly regularly varying it is shown that system (A) may possess three types of positive solutions (x(t), y(t)) which are strongly monotone in the sense that ...
متن کاملSTUDYING THE BEHAVIOR OF SOLUTIONS OF A SECOND-ORDER RATIONAL DIFFERENCE EQUATION AND A RATIONAL SYSTEM
In this paper we investigate the behavior of solutions, stable and unstable of the solutions a second-order rational difference equation. Also we will discuss about the behavior of solutions a the rational system, we show these solutions may be stable or unstable.
متن کاملOn blow-up and asymptotic behavior of solutions to a nonlinear parabolic equation of second order with nonlinear boundary conditions
We obtain some sufficient conditions under which solutions to a nonlinear parabolic equation of second order with nonlinear boundary conditions tend to zero or blow up in a finite time. We also give the asymptotic behavior of solutions which tend to zero as t→ ∞. Finally, we obtain the asymptotic behavior near the blow-up time of certain blow-up solutions and describe their blow-up set.
متن کاملPeriodic solutions for a second order nonlinear functional differential equation
The second order nonlinear delay differential equation with periodic coefficients x ′′(t)+ p(t)x ′(t)+ q(t)x(t) = r(t)x ′(t − τ(t))+ f (t, x(t), x(t − τ(t))), t ∈ R is considered in this work. By using Krasnoselskii’s fixed point theorem and the contraction mapping principle, we establish some criteria for the existence and uniqueness of periodic solutions to the delay differential equation. c ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1977
ISSN: 0022-247X
DOI: 10.1016/0022-247x(77)90275-x